Chapter 2: Basic Data Analysis – Summary Statistics and Graphs

Meaning of the Variables

- $\bullet \qquad P_L =$
- \bullet $P_S =$
- s =
- \bullet $\bar{\chi}$ =
- \bullet χ =

Formulas

- > Relative Risk (RR) =
- > Attributable Risk (AR) =
- > Attributable Risk % (AR %) =
- > Number Needed to Change (NNC) =
- > Coefficient of Variation (CV) = Z-Score =

Mean and Standard Deviation Practice

Α	В	С
22.73	5.139	2195
25.65	4.919	1615
12.374	6.197	1697
5.192	4.323	1832
21.59	10.10	1921
19.77	8.212	
18.96	6.23	

^{1.} Calculate the mean and standard deviation of data sets A , B, and C

A:

B: C:

2. Which data set is MORE consistent: (Arrange the Dataset in the order of their consistency)

Risk Practice!

	Sick	Healthy	Total
Low Iron Consumption	232	4,321	
Normal iron consumption	2,768	25679	
Total	3,000	30,000	

1a. What is RISKY:

1b. What is the RISK:

2. Calculate the RR:

3. Calculate the AR:

4. Calculate the AR%:

5. Calculate the NNC:

Suppose that the data set has a mean of 1421 and a standard deviation of 233.4. Answer the following questions:

- 6. Calculate the CV:
- 7. Calculate the z-score with a data value of 1430:

Risk Practice!

	Sick	Healthy	Total
Low Iron Consumption	150	4,500	
Normal iron consumption	2,500	25,000	
Total	3,650	29,500	

	SICK	Hoaming	TOTAL
Low Iron Consumption	150	4,500	
Normal iron consumption	2,500	25,000	
Total	3,650	29,500	
1a. What is RISKY:			
1b. What is the RISK:			

- 8. Calculate the RR:
- 9. Calculate the AR:
- 10. Calculate the AR%:
- 11. Calculate the NNC:

Suppose that the data set has a mean of 1520 and a standard deviation of 210.2. Answer the following questions:

- 12. Calculate the CV:
- 13. Calculate the z-score with a data value of 1500:

Formula Sheet:

	Formula
Relative Risk (RR) = BIG number divided by SMALL number; always >1	$RR = \frac{P_L}{P_S}$
Attributable Risk (AR) = large proportion minus small proportion	$AR = P_L - P_S$
Attributable Risk % (AR %) = answer from AR divided by large proportion	$AR\% = {AR \choose P_L}$
Number Needed to Change (NNC) = one divided by AR	$NNC = \frac{1}{AR}$
Coefficient of Variation (CV) = standard deviation divided by mean into percentage	$CV = {}^{S}/_{\bar{X}} \times 100\%$
Z-Score = data point minus mean all divided by sample standard deviation	$z - score = \frac{x - \bar{x}}{s} \times 100\%$